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LEAST SQUARES OVER THE COMPLEX FIELD

l. Introduction

Sets of complex linear (observational) equations in s & r unknowns
srise in ballistics. For the equivalent real esuations the least square
solution is freguently accomplished by the square rcot method. This method
has saveral characteristice which reccmmend it for use with high speed
comput ing machinery:

(1) In fixed decimsl machinss the scaling problem tends to be
minimized because the square root operation reduces theé spread of data.

(2) The algoritims invoived are particularly simple and independent
of the number of unknowns. (This implies that to extend a eet of instruc-

tiona for solving an nth order system {oc a larger system rasquires only

adding instructions.)

(3) Storage allotment is systematic and simpla.

(4) The amount of storage required (at least with certain machines)(l)
appears to be minimal,

(5) A simple smimultanecus check cf ¢ha fymmation and solution of
the normal equations and calculation of residuals is possible (cf. theorem 5).

(6) Hoighta(z) of the unknowns are readily calculated from inter-
mediate results.

It is not apprecisted in 211 computing circles that the square root
technique admite of a trivial extension to the complex domain maintaining
the characteristics mentioned above, Cnce this is apprecisted it is
natural to ask whether there is "any differsnce" in solving the complex
normal equation= by computing with complex numbers or by computing with

(l)The program constructed at NOL for use on a Card Programmed
Calculator using a double uperstion general purpose board requires no
temporary storage. The atorage raquiraement for solving a system of n
equations with n unknowns is one more than the number of (in general
distinct)_elaments in ths {augmented) matrix, i.e,, the storege require-
ment is %Kn*l)(noz).

(Z)See Whittaxer and Robinson, Calculus of Observations, Third
Bdition, p. 239.
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real numbers, It turns out that the number of real operations (of each
type) requirad te solvs the normal squations by computing wlthin the com-
plex domain is less than or equal to half the number of real operations
required to solve “he equations by computing within the real domain.
2, The problem

Let M ~ N + 4P be a4 complex r x s matrix, s Sr. Let w = u + iv
he a complex r x 1 matrix (or column vector). The problem; then, is to
find a complex s x 1 matrix, z = x + iy, which, in the least aquare

sense, is the best possible solution to the set of equations

(1) Mz & w,

(4" denotes "equals approximetely" and is used to emphasiza that there
exists, in genersl, no z such that Mz = w precisely.)

From (1) we obtain

(N ¢ iP)(x ¢ iy) & u + iv

(Nx = Py) + i(Px + Ny) 4 u ¢ iv

so that
/'x\\

(2) Nx =Py & u or {8 =P)| / E Y
7

and
x\

(3) Px + Ny & v or (F k')( ) & v,
y

Equations (2) and {2) taken togwihsr yield

G G- Q)

rd
The two methods\>) of solving (1) with which we sre familiar both seek

(3)

Cf. references 4 and 5.
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the soclution of (4).

We note that (2) and (3) are respectively eguivalent to

4
(P N)( ‘> + q
x

/=y \
(N -P)\ /4 -v
X

and thee= l-tter taken together are sguivalent io

LI TR E
\P N/\x/-\u).

(L} an2 {5} are squivalent and each is equivalent to

) (N =P\(x -y) . (u -.)
P N/ \y x \v u

Lot f dsnote the mapping

Can
\n
N

/N <P\
f(M) = '\ ) for any complex matrix M.
\F N/

Then (6) may be written
f(M)2(g) & f(w),

i« Some theorems

Theorem i, For any z = x ¢ i1y the sum of the squares of ths moduli

cf the residuals of {i) squals the sum of the squares of the residuals of

(4).

Proof, The sum of ths squares of the residuals of {1) may be written
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(7) Y(M = w)(Mz - w)

where "tA" denotes the transpose of the matrix A and A denotes the matrix
obtained from A by replacing each element by its zonjugate, [For t’I we
shall often write *A.] Replacing M by N ¢+ iP, z by x + 1y and w by u + iv
¥s obtain

Mz =w = (Nx «Py =u) + i(Px + Ny = v)
so that (7) becomes
(8) YNk = Py = w)(Nx = Py = u) ¢+ 5(Px + Ny = v)(Px + Ny - v).

The sum of the squares of the residuals of (4) is
MV SN
G E)-OIC D6 -0
| \P N \_y v P N/\y (v

’./
'/Nx-Py-u> Nx - Py - u\
\Px*Ny-v

\Px + Ny - v/
which squals (8) end hence (7).

Lemma 1. If A is a hermitisn positive dsfinite matrix, then there
axists at most one triangula: matrix S with real positive diagonal elements
such that ‘8-S = A, (S = (°1J) is triangular shall mean that 3 is &

square matrix wiih the property that i > 3 implies s, 5" 0.)

Proof. Assuming S exists we have Z'k:‘l ;kiskj - aij’ 151,33 <n,
where n is the order of A. Since 1 > § impliies Sy " 0, for 1 § j we have

i 1 .
a Zk-l 8134+ ¥hich ylelds the formules:

1)
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%y 4
5]y = Van, Gy T an . 1<3Em
-1 _ 7
(9) 8y = (nij- kz-:1 LRV 1<1<jé&n,
. Yo -1 5 -
3y = Vay,- PR 5 i%%s 1<ti=3<n,

Theorem 2. The following five conditions on & hermitian n x n matrix

A aré squivaient, {{a) is taken as the definition of & matrix being
positive definite.]

(a) '2Ax > O for all non-zerc complex n x 1 matrices x.(“)

(6) A = “B.B for some complex r x s matrix B and |A| ¥ O,

(e) The principal minors of A are ell positive, i.e., the determinants
of all matrices obtained from A by deleting the same rows and columns ars
all positive. (|A| is 2 principal minor,)

(d) A = “3.3 for a complex triangular matrix S = (s;,) with
positive diagonal elements.

(o) Let A, 1 S i < n, denote the matrix obtained from A by delsting

rows and columns 1 + 1, 1 + 2, *+s, n. |4, |>0for 1§41 <nand [A] >0,

Proof. (a) implies (e¢). Laet Rys Ays oty A be tho not necessarily
distinct reots (eigenvaluas) of g(A) = |A = AI|, so that g(A) =

T2, (3 =A). Then g0} = |a] = [0, A,. For sach A, there exists
a non-~sero n-tupie (column vector, eigenvector) x; such that Ax, = A.x,,

since there axists a non-trivial (non-sere) solution tc the equatiocns

(“)Pormhmitim Ay E:Ax - 3 . t("xK) a My -« *Tux

sc that “XAx is rzal.
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(& ~ ).11):: = 0, Using the hypothasis: t'i, “Ax. -
S
t= ~ . H n
Ayt XX, > O, so that A, > 0. Hemce jA{ = T[,0 A, > O,
Let. A(1) denote the matrix obtained from A by deleting the ith row
and column and x(i) the column matrix obtained from ths n x 1 matrix x
by deleting the ith element (row). If the ith row of x is ._ro, then

Y2ax = YI) AGL) x(1),

so that A(1) is positive definite. From the presceding paragraph,
jA{1)] > 0. It follows that all principal minors are positive,

() implies (e). Obwious,.

(o) implies (4). [4)] = a;; > O, so that there exists 5;, =
V‘“_J, and s,, = a..‘._"_,/n.‘_le If a,, - ;‘02"12 > 0, then we can find
852> 0 and 5,,, 8,, satisfying (9) above. If, further, 8, - ;lli"J -
"623.23 > 0, then we can find 33 >0, 8340 %20 %3 satisfying (9)

atove., Let r denete the iwast J such that

1

~

(assuming there exists susch a j, 1 < 3 $n). Let Srr £ O be guch thai

=1
2 -
- - a8 - Z °
rr o o =1 Cer i
Denoting the triangular matrix ('13)1 1,3 ¢r by S, we have
§r-s, - A

vhere §_ is "8 except in the rth row and eolumn stands —s_ instesd of s

X
lsrl - I-l-l ¢
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so that

The left-hand member is positive by hypothesis, while the right-hand
member is negative or zero. Thus the assumption of the existence of J,

1 < J $n, such that {10) holds is false, and the existence of S is

(d) implies (b). Take 8 = S, |A] > O since |A] ﬂi—l ;1
and 84 > 9.

(b) implies (a). “%ix = '%-YBax - Yi'Bemx - YBOBX 2 O
since t'(-B;)Bx is a sum of squares. If, for some x, t(-ﬁ)Bx = 0, then
Bx = O. Hence “BeBx = Ax = O, |A| # O and Ax = O imply x = O (this

follows from Cramer's rule).
Corollary, If A is hermitian positive definite, il.en there exists
a uniqueé irlangular matrix with positive diagonal slaments such that

A = ‘B,
Proof, Immediate from lemma 1 and theorem 2,

Leama 2. If the sum (product) of two complex matrices M,, M, is
defined, then the sua (product) of the two real matrices f(Kl), f(H.Z)
is defined and

(a) M) + M) = £00) + 1MW),

() £04M) = 20m)er(0),

(¢) f(aM} = af(M) for any real number a.

Proof, That the sum and product of f(Ml)_, M‘z) e defined is clear,

Proofs cf (a) and {c) are obvisus,
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(b) Let M, = Ny + 4P, M, = N, +iP,. Then

N -P N ~P
f(H]_)'t(H,z) = ( 1 l> 2 2>
Pl Nl_ P2 N2

_ <jn132 - PP, (NP, ¢ plsz):>

NP, ¢ PN, NN, - P,P,
- f(ui.nz_) B
Remark. An n x n matrix A is called non-singular if A% exists.

A"l sxdsts if and only 1f |A| # O since (1) if AL exists, A-A”™L = I,

[A]-]A™Y] = 1, so that |a| # O, and (2) if |A| # O, then Aby, = 6y,
151 < n, fixed j, has a solution by Cramer's rule; Jlet I vary between
1l andn, then if B = (bij)’ AE = I,

Leama 3. (&) f(In) = 1,, where I denctes the n x n identity

natrix,
(b) If M is a square matrix and bf'l axists, then (M) is squars,
(200170 axists, and fHY) = [£(M)F7L.

() £(*m) = *r(m).
(d) H = P+ 5Q is hermitian if a:d caly if P is symmetric and

Q is skew-symmetric,
(¢) If Y is hsrmitian positive definite, then f{H) is symmetric

positive definite and if H = P + iQ then P is positive definite.

Proof. (a) follows from the definition of f,

(b). If AM = I, then f(A)ef(M) = I using lemma 2(b) and lemma 3(a).

Thus £(A) = (£(x))~L ir a = ¥°%,

(c). IfLM = N+ 4P, #M = Oy - 1¥p,
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/N =PY
(M) = | 5
\p N,)

£(*M) = ; )

~tp ‘N)

and the result follouws,
(d). Tmnediate from the definition of hermitian,
(e). By the corollary to theorem 2 there exists a triangular matrix

S such that #5-8 « H, Applying £ to both sides of this equaliity yields

f(#5)-f(S) = £(H).

. By lemma 3(c), £(*S) = “£(S), so that
() | br(s)ef(s) = o(m),
‘ and
(B) bew) = YWhp(s)ef(s)] = £(H).

~—

(B) shows that f(H) is symmetric. That |[f(H}| # 6(5) folious from

(over the complex numbers) by theorem 2,

Alternatively, f(H) may be proved symmetric positive definite as
follows, f(H) = (2 '2\ . From (d), £(H) is symmetric. Since H is
positive definite,

YiHs = afs) > 0,

H) £ - -
£(s) £(¥) (3 5 ol o

(5)Indcod, it may be shown that [f(H)! = |H[2.

X =¥\

e
Py
B
—
L4 \\
«
]
\—
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where z = x + iy, It follows that

oty f(H’)(x> - a(z) > 0.'8

o,

Let S = U + iV, Then

P -q MR AVATIE
£f(H) = (Q p> = (\-"v ‘u)\v u>'

It follows that P = tU-U. U is triangular and the slamentis along its
main diagcnal are the elements along the main diagonal of S. Thus

Ul = |8] ¥ O. Therefore, P is pcesitive definite,

Theorem 3. Assuning [#M-M| ¥ o,(7) the g which minimizes the sum
of the squares of the moduli of the residuals of (1) is the solution

to the equation
(11) #MeMez = Hphew,

Proof, Since |[#M-M] # 0, it follows that [f(#MeM)| ¢ C from
lemma 3(b). By theorem 1, if (:) is the least square solution to (4),
then z = x ¢+ iy minimizes the sun of the squares of the moduli of the

residuals of (1). The least square solution to (4) is the solution to

the equstien

/x) t u\(u).

(12) tf(M)-f(M) t

(6)Thia latter proof shows that f(H) is positive definite over the
real numbers. It may readily be shown that in general 4f a symmetric
matrix is positive definite over the real nunmbers, it is positive definite
over the complex numbers,

(7)If Mis an r x s matrix, s & r, of rank s, it may be shown that
I*M'Ml f C.

10
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Application of £ to (11) yields
(13) VoMo (M)-£(z) = CE(M)-(w).

The first column of {{z) is then the solution to (12) and the theorem

is proved.

Theorem 4, Let Ax = g represent a set of n linear squations in n
unknowns, Assume A is an n x n hermitian positive definite matrix and
g is an n x 1 complex matrix., Then
A

—g\
. \, then [B] < [A};

g a/

(b) there exist an n x n triangular matrix S and an n x 1 matrix k

(2) there exdists a such that if B = (/
\ -

such that

(A -8\ /5 AVEREA

tE a) i \;% lj\O l);

(c) there exist an n x n triangular matrix T and an n x 1 matrix y

such that
/'\-v\ “"\/“-Sh :-iz _ /niva n-\
\\-n x-\/\,.n ;-\) \\-n ux} ’
1 0 0 /
(d) Ay = &.

Proof., Expand |B| by elements of the last column, giving |3| =
¢ + |A|a where ¢ is independent of a, i.e., |B| is a linear function of a,
Since |A| ¥ O, a can be determined sc that |[B| = |a].

Since [B] = |A| > 0, and A is positive definite, it follows from
theorem 2, condition (e) that B is positive definite, By the corollary

to theorem 2, there exists a unique (n+l) x (n+l) triangular matrix which
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decomposes B (in the sanse of the corcllary). Since |B|/|A| equals ths
equare of the element in the (n+l)th row and column, this clement is 1.

Thus B decomposes as shown in (b).

Let
TOTNE R T
inn L aun 1x B \\;‘ Ans .
w 1 0 1/ 0 1

Assume inductively that T is iriangular. Then wS + 0«1 = 0. Since
Is| # 0, w=0, so that the inverse of a triangular matrix is triangular.
(e¢) follows,

From (c), T(=k) + y*1 = O and TS = I, so that

y = Tk
Sy = STk = k
t§Sy - U,

Feom (bj), A = 35S and -~g =~ t3(-}() + 01, 8o that {d) follows.

Theorem 5., Let e = Mz -~ w where M, w are as in (1) and z is the
sclution to (11)., Let A = 3#MeM be non-singular. Let g = *Mew, Let
A = #3.5, the unigue triangular decamposition given by tha corollary to

theorem 2. Let k = #5351 g, Then

(14) H#era = Fyew = delc,

Proof. #*ese = XZzHMMz ~ HWMez ~ ¥z RMw ¢+ Fww = %Ze%X557 - Hgz -
Rgg + Hyw = F¥zg o Hgg o Hgg + ¥ww = ww - #gz, Now Sz = k, %o that

z = g1 k, while #Sk = g, so that #g = #kS. (1) follows,

5. Weights
Lst A be a non-singular s x s matrix, If (xk), k =1,2,+00,8, is

the solution of the real matrix equation

12
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(15) Ax = g,

then the weight(s) of the sclution X » written “k(X) or more properly

'k(A); is given by

I
1 4|
(16) uk’x‘ " T T %
N~/ ;Al

where |A_| is the minor of a.. and whers {s,,) = E = A",
K Kk i3
1r (lk) - (Xk + iyk), k=1,2,-++,8, is the solution cf the camplex

matrix equation

(17) Az = g
and
(18) A = B e+C(i, g = m+ni,

then we define

(19) 1 - -~ - I—-Ak—l -
w ) T % (e N %k

K

and we define wk(x) - “k(f(A)) and wk(y) - uk‘.(f(k)).

Theorem 6. If A is hermitian, then w (s) = w (x) = w (7).

Proof. Let A™X = M+ Ni_, Since A is hermitian, AL is also
hormitian(g) so that N is skew-symmetric., Thus
(20) Lo & o
uk(zs B ¥ M Dk

.

It follows from lemms 2{b} that

(B)Cf. Wnittaker and Robinson, Calculus of Observations.
1)
-1

« *] = I. A = #AL

(3 . N _
‘PProm AT « I follows *a~lewa = #(an .
is hermitian,

so that *ALeA « I, Hence *A™L =« A™! and A

13
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80 thet

1 1 1
v:kv;x,‘ wka’ Mk v,{! z) °

o

» Lounting opsrations

Theorem 7. Let a(n), m(n), d(n) represent the number of real additions
{or subtractions), multiplications, and divisions, respectively, required
to find S uuéh that #5:3 = A by means of algorithm (9) on page 5 where
A is a real symmetric positive definite n x n matrix and S is a triangular
matrix, Let a"l(n), m'l(n), a"*(n) rspreseni. the m=ber of adiitiona
(or subtractions}, multipiications, and divisions, respectively, required
to find T = 7! by means of the formulas given below. Let *a(n), ---,
*a-l(n) ; °** have corresponding meanings in ths cass that A 18 a not real

hermitian positive definite matrix. Then

) a(n) = m(m) = ai(m) = a@E?-1)
d(n) = Za(n-1)
) = Fal-1@-2)
aln) = Fnln+ 1),
(8) *a{n) = *a(n) = #="Yn) = 2nn-1)(2n-1)

3
#at(n) = §n(n - 1)(n ~ 2)

*d(n) ® n(n =1)

#d™l(n) e« n°.
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Proof, We sstablish the formulas for m(n) and *m(n) only. The
othei's may be established in a similar manner., We give first the formulas

for computing T = (tij)‘

- -1 t,.s
(21) tyy = = tyy = =L kKl vhen i < 1.
N JJ JJ
The formula for m(n) is correct for n = 1, Assume it correct for n.
Since the number of multiplications required to compute 8y nel’ 0<is
bl

n+l, isi -1, mn+1) = % n(nz—l) +(0+1 424+ 3200 4n) =

% n(nz—l) + % n(n+l) = % n(n+l)(n+2), which eziablishe= the formula,
Multiplication of two (in general unrelated and not real) complex

numbere requires four real multiplications, In case of multiplication of

a ccmplex number by its conjugate, thz number of real multiplications

required is two, The mumber of multiplications required to calculate

the diagonal elsments (in the real cass) is % n{(n-1), Hence sm(n) =

4{m(n) = % n(n-1)] + 2[% n{n-1)], which yields the desirsd rasult.

Corollary, If A is hermitian positive definite, the~ ‘he number of
operations required to compute S such that #5+S = 2 is leas than half

that required to compute S such that ts.s - £(A).

Proof. Let
(a) = m(2n) + m"(2n) = £ n(2n-1) (2022}
(a)' ~ *m(n) + *m Nn) = £ n(2n-1)(n-1)
(b) = aizm) + a™(2n) = 3 n(2n-1){4n-1)
(b)' = %a(n) + #a7H(n) = 3 na(n-1)(4n-5)
(¢) = a(2n) + dY(2n) = u4n®

*d-l(n) = n(2n-l1),

+

(e)' = #i(n)

15

|
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It is readily seen that

(' < 3 (a)
(b)' < 3 (b)
() < 3 (o).

It is also clear that the number ol square roots to be taken is 2n

in the real case and n in the complex case.

7. Miscellansous remarks

1. If A is 2 real eigenvalue of A with eigenvector ¢ = x + iy ¢
0, then A is an sigenvalue of f(A) with linearly independent eigenvectors
<x) 5 (ﬁi) since Az = As implies f(A)+f(s) = Af(z), It may be neted

J
that x + iy and =y + ix are linearly dependent (over the complex numbers).

2. A computing tecinique to solve Az = g with hermitian positive
definite A may ba baeed upon the following equations

#5:82 - g

Sz = k wherek = #37% g

which yields the formulas for z,:

n
s = k,.
S, %1 1
Thus 5nin = kn, an—l,n—lzn-l * 8 1% kn-l’ etc,
The formulas for computing S and k are given by (9) where the last

colum {(from left to right) of S plays the role of k.

3. It should be noted in a computation based upon theorem 4,
a need not be calculated.

A variant of theorem 4, freguently convenlent, is ~htained by

16
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raplacing -g by g, -t§ by tg, -k by k, =K by Y% and replacing 1 by -i.

Y remains unchangsd and Ay = g.

L. A computation based upon remark 3 rather than remark 2 is more
economical when the weights of the unknowns are desired since the weights

-

are the diagonal elements of A”~ (excluding -1}, g1 i calculated, and
A-l - S-l e *S-l. If the weignts are not dsesired, a computation based

on remark 2 is more economical,

5. It is frequently desirable to "scale" the r x s matrix of

obaervational equations

(1) Mz * w.
This is accomplished by considering instead of (A)
. (B) MDZ & cew,

where D is an 5 x s diagonal matrix and ¢ is a real number, The normal

equations corresponding to (B) are De#MeMeDZ = De*Mecw = cD<*Mw or

(c) DADZ = cDg

where A = #MeM and g = #Mew. The solutlor to (C) is
zZ = D‘lA'ln’l-cDg - cD‘l-A’lg

so that
§ = oD e

: or
z = cip.%.
6, If wa define M @ Hy, =~ MM, then A = S (@ S, whence tha

1

name "sguare roct method", Cf, references 1 and 2.
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7. Concerning theorem {4, a convenient order of computation is

81y 812 952 ll3, 323, 333, ess, After 'ij

aij in memory (the rezl part of siJ displacing the real part of aij and

is computed, it displaces

! the imaginary part of ai.1 displacing the imaginary part of aij)‘ Compar=
ing {7;, one notes that eaci quantity required to computs ’43 is in
storage at the tim~ that siJ is Seing computed.

Similarly, a convenient order of computation for tij is tll’ t'12’

t After t

222 Y130 Y230 B3y o 13
memory. CLomparing (21), ons nctss that sach quantity required to compute

is computed, it displaces 343 in

tij is in storage at the time that t is being computed.

1

8. If H is hermitian positive definits and H = #3.3, then

f(H) = t'1'(S)-1'(S)_, but £(3) is not triangular. The economy of working
within the complex field can be attained working in the real field if one
seeks a decomposition for f{H) of the above form rather than a triang: lar
dcecomposition. The triangular decomposition does not make use of the

specizl form of f(4).

§. If A is a symastric matrix and t'Jch = C for all real x, then
A = 0, For, taking x to be the column matrix with 1 in the ith position
and zero elsewhere yields t'xAJt - a, = C. Taking x to be the column
matrix with 1 in the ith and jih positisns and zero elsswhsre ylelds

f‘LA_x - a4 2‘13 + "JJ - 2.13 = O which justifies the assartion.

if ¥ 4= s hermitian matrix and #sHs « O for complex n x 1 matrices
z, then tx f(H) x = O for real 2n x 1 matrices x. It follows that

f(H) = O. Hence, H= 0,
10, Any complex matrix A may be written as
By AR

18
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1 \ . 1 \ ; :
where H, = 5 (4 + #4) and H, = =¥ (A = #A) are hemitian, If *zAz
- -~ “~ -4

is real for all z, then *zle + i*szz is real. By footnote 4, *zﬁlz

and *zH2z are rsal, Hence *szz = 0O for all z and Hz = 0, Thue, if
%:Az is real for all z, then A is hermitian, A fortiori, if 4 is positive
definite over the complex fieid, it is hermitian, In particuler; if a

real matrix is positive definite over the complex numbers, then the matrix

is symmetric.
There exist, however, non-symmetric real matrices positive definite
2 2
o 1
is positive definite over the real numbers since (2 l) is positive
I X

defirite and for all skew-symmetric matrices Q, thx = O for all x,

over the rsal numbers. For example, (f i) *‘(_? é>

if a real non-yymmeiric mairlx is positive definite over the real

unbers, it is not positive definite over the complex numbcere.

11, If U is a unitary matrix, i.e., #*UeU = I, then f(U) is
orthogenal singe f{#J.U) « tf(U)-!(U) = I,

12, It is well known that(lo) if H is 2 hemitian matrix, tnen there
exists a unitary matrix U such thet #U-.H-U 1s diagonal. Apvlicaticn of f
yields that t'1‘(U)-f(§i)-f(u) is diagonal with f{U) orthogonal. Thus the
eigenvalues of f(H) are precissly the eigenvalues of H with doubled

muitiplicity. In particular, it follows that [f(H)| = |H|2.

(lo)Cf. Halmos, Finite Dimensional Vector Spaces, p, 129,
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